

# A Trust Crisis In Simulation-Based Inference? Your Posterior Approximations Can Be Unfaithful



Joeri Hermans\* Arnaud Delaunoy\* François Rozet Antoine Wehenkel Volodimir Begy Gilles Louppe

### Simulation-based inference



# **Motivation**



The posterior density obtained with the first approximation is sharper than the ground-truth posterior density. Consequently, it may exclude parameter values that are actually plausible and drive the scientific inquiry in the wrong direction. A better approximation would be the second one which is flatter and do not reject any plausible value.

# **Expected coverage**

The expected coverage is expressed as  $\operatorname{expected coverage}(\hat{p},\alpha) = \mathbb{E}_{p(\boldsymbol{\vartheta},\boldsymbol{x})} \left[ 1 \left[ \boldsymbol{\vartheta} \in \Theta_{\hat{p}(\boldsymbol{\vartheta} \mid \boldsymbol{x})} (1-\alpha) \right] \right],$  where the function  $\Theta_{\hat{p}(\boldsymbol{\vartheta} \mid \boldsymbol{x})} (1-\alpha)$  yields the  $1-\alpha$  highest posterior density region of  $\hat{p}(\boldsymbol{\vartheta} \mid \boldsymbol{x})$ .

A **conservative model** is a model such that  $\operatorname{expected coverage}(\hat{p},\alpha) \geq 1-\alpha, \quad \forall \alpha$ 



All benchmarked algorithms may produce non-conservative posterior approximations.

#### **Amortized vs non-amortized**

#### Amortized

- 1. Build a general model  $\hat{p}(\boldsymbol{\vartheta}|\boldsymbol{x})$ .
- 1. Build a model for  $\hat{p}(\boldsymbol{\vartheta}|\boldsymbol{x}=\boldsymbol{x}_o)$ .

Non-amortized

- 2. Evaluate  $\hat{p}(\boldsymbol{\vartheta}|\,\boldsymbol{x}=\boldsymbol{x}_o)$
- 2. Repeat for each observation.
- Non-amortized algorithms tend to be less conservative than amortized ones.
- Expected coverage computation is expensive for non-amortized approaches since it requires building many posterior models.
- We advise to use amortized algorithms or non-amortized ones that allow local diagnostics.

#### **Ensembles**





The expected coverage probability of an ensemble model is larger than the average individual model's. The ensemble size positively affects the expected coverage probability.

# Take-home messages

- All benchmarked algorithms can produce non-conservative posterior approximations. Consequently, all those algorithms could erroneously exclude plausible parameter values and be potentially misleading.
- Performing diagnostics to identify overconfident posterior approximations is crucial. The use of amortized algorithms or non-amortized ones that allow local diagnostics is then advised.
- Ensembling constitutes an immediately applicable solution to build more conservative approximate posteriors.