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Simulation-based inference Amortized vs nhon-amortized
Amortized | Non-amortized
Parameters Simulator } Observations _ X | )
9 ~ p(9) x ~pz| ,,9)J » . 1. Build a general model p(d| ). ||1. Build a model for p(9| z = x,).
2. EBvaluate p(¥| x = x,) 2. Repeat for each observation.
’I' = Non-amortized algorithms tend to be less conservative than

amortized ones.

Estimation ( Real observation o , ,
CIED € Llnference} T, = Expected coverage computation is expensive for non-amortized

approaches since it requires building many posterior models.

= \WWe advise to use amortized algorithms or non-amortized ones that
allow local diagnostics.
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The posterior density obtained with the first approximation is sharper
than the ground-truth posterior density. Consequently, it may exclude
parameter values that are actually plausible and drive the scientific in-
quiry in the wrong direction. A better approximation would be the sec-
ond one which is flatter and do not reject any plausible value.
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The expected coverage is expressed as
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where the function O,y | 4)(1 — @) yields the 1 — a highest posterior
density region of p(9 | x).
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A conservative model is a model such that

expected coverage(p,a) > 1 —a, Va

1—q=0.95

0 1—a=09 1—a=0.85 1—a=028 1—a=0.75 1—a=0.7
95F * — * == * * * ——7 sl * =—

0.95 4 0.90F

0.85F

Amortized Non-amortized 090

J 0.80L

NRE NRE ensemble NPE NPE ensemble SNPE SNL SNRE Rej-ABC SMC-ABC 1_?‘:0@5 1_\05:036 | 0.7 1_(\%:0'55-_ 1_\052075 1_wa:0'14 7
1—a=0.35 1—a=0.3 1—a=0.25 1—a=02 1—a=0.15 l—a=0.1
— o 0.5F i e i — i s i i 0.25F i — w ey
2 z ] ] = | 0asf
204f 0.20F :
E 1 015] 1 010f
.50.3— 1
g E 1 0.10f ] ]
fé 0 20 40 20 40 20 40 20 40 s P
g Ensemble size
1024 2048 — 4096 — 8192 — 16384 — 32768 — 65536 — 131072 e 1—a
i The expected coverage probability of an ensemble model is larger
- than the average individual model’s. The ensemble size positively
= affects the expected coverage probability.
3
0 Take-home messages
s/ W WS WL = All benchmarked algorithms can produce non-conservative
iy v e | ) posterior approximations. Consequently, all those algorithms could
I erroneously exclude plausible parameter values and be potentially
misleading.

= Performing diagnostics to identify overconfident posterior
approximations is crucial. The use of amortized algorithms or
non-amortized ones that allow local diagnostics is then advised.

All benchmarked algorithms may produce non-conservative posterior
approximations.

= Ensembling constitutes an immediately applicable solution to build
more conservative approximate posteriors.




