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Simulation-based inference

Parameters
θ ∼ p(θ)

Simulations
x

Simulator
x ∼ p(x|θ)

Real observation
xo

Estimation
p̂(θ|xo)

Inference

Conservativeness in SBI

Expected coverage probability of the posterior surrogate p̂(θ |x):

1− α̂[p̂;α] := Ep(θ,x)

[
1(θ ∈ Θp̂(θ |x)(1− α))

]
.

• When ∃α′ : 1− α̂[p̂;α′] < 1−α′, we say that p̂(θ |x) is overcon-
fident.

• Overconfidence is problematic because the surrogate tends to
exclude parameter values that are actually plausible at the con-
sidered credibility level. On the other hand, extremely under-
confident surrogates are not informative. Although there is a
tradeoff, scientific applications take a cautious approach by fa-
voring underconfidence.

• We encourage conservative surrogates at credibility level
α′, which have 1− α̂[p̂;α′] ≥ 1− α′.

Balanced Neural Ratio Estimation

Neural ratio estimation (NRE) trains a clas-
sifier ϖ(y = 1 |θ,x) to discriminate be-
tween jointly drawn samples, p(θ,x), and
marginal samples, p(x)p(θ), i.e. sampling:

π(θ,x | y) :=
{
p(θ)p(x) y = 0

p(θ,x) y = 1

with marginals π(y = 0) := π(y = 1) := 1
2.

Data generation for training:

y ∼ π(y) := Ber(y; 12)
y = 0
y = 1

(θ,x) ∼ p(θ)p(x)
(θ,x) ∼ p(θ,x)

Inference on θ ∼ p(θ) and xo:

(θ,xo)
Classifier

ϖ(y = 1 |θ,xo)
p̂(θ |xo) =

ϖ(y=1 |θ,xo)
1−ϖ(y=1 |θ,xo)

p(θ)

Balanced Neural Ratio Estimation (BNRE) regularizes the classifier to be more conservative by
minimizing the balancing criterion (using a Lagrange multiplier) which is expressed as

B[ϖ] := B(w) :=
(
Ep(θ)p(x) [ϖ(y = 1 |θ,x)] + Ep(θ,x) [ϖ(y = 1 |θ,x)]− 1

)2
,

where w are the classifier weights. This is added to the main NRE objective, the binary cross entropy.

Contribution 1: a new view on the balancing criterion

The χ2 divergence is defined as

χ2(π(y) ∥ϖ(y)) :=

∫ (
ϖ(y)

π(y)
− 1

)2

π(y) dy.

We identify that B[ϖ] = χ2(π(y) ∥ϖ(y)).

• Enforcing the balancing criterion regularizes the marginal classifier towards the target
distribution for y: π(y). This new objective aims to be a building block to construct a better
understanding of the balancing criterion. It revels a principle for balancing multi-class classifiers.

• Why the χ2 divergence? The Kullback-Leibler divergence KL(π(y) ∥ϖ(y)) would be information-
theoretically motivated, but it is challenging to optimize due to the log in the integrand.

Contribution 2: extending balancing beyond NRE

Define a classifier in terms of the variational (unnormalized) posterior approximant q̂w(θ |x). We
approximate r(θ,x) :=

p(θ,x)
p(θ)p(x)

=
p(θ |x)
p(θ)

with q̂w(θ |x)
p(θ)

which yields the classifier

ϖ(y = 1 |θ,x; q̂w) :=
q̂w(θ |x)/p(θ)

1 + q̂w(θ |x)/p(θ).

The balancing criterion can be expressed

B(w) :=

(∫
(π(θ,x | y = 0) + π(θ,x | y = 1))ϖ(y = 1 |θ,x; q̂w)dθ dx− 1

)2

=

(∫
(p(θ)p(x) + p(θ,x))

q̂w(θ |x)/p(θ)
1 + q̂w(θ |x)/p(θ)dθ dx− 1

)2

• We propose BNPE which regularizes NPE’s maximum likelihood-based objective with the bal-
ance criterion to train a normalized density estimator qw(θ |x). We have q̂w(θ |x) := qw(θ |x).

• We propose BNRE-C which regularizes NRE-C’s multi-class, classifier-based objective with the
(binary) balance criterion to train a ratio estimator. How do we define the binary classifier since
NRE-C normally only defines a multi-class classifier? We do it in terms of the (unnormalized)
density estimator q̂w(θ |x) := exp ◦hw(θ,x)p(θ) where hw is a neural network. Using the above
definition, the corresponding (binary) classifier is ϖ(y = 1 |θ,x; q̂w) :=

exp ◦hw(θ,x)p(θ)/p(θ)
1+exp ◦hw(θ,x)p(θ)/p(θ)

=

σ ◦ hw(θ,x). This regularizing classifier is the same binary classifier as in BNRE.

Results
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Calibrated estimator

BNPE and BNRE-C produce more conservative posteriors than NPE and NRE-C, respectively.

What if the posterior surrogate is imbalanced?

We observed that BNPE can be harder to balance than classifier-based algorithms. We show that
this can be mitigated with a proper initialization scheme.

• Hypothesis: In order to be balanced, BNPE needs to learn the prior as the equivalent classifier
is a function of both the approximate posterior and the prior.

• Solution: Initialize the normalizing flow in a balanced state (close to the prior).

How?

• Use the prior as base distribution or add a transformation that maps the base distribution to the
prior at the end of the normalizing flow.

• Initialize all the transformations to an identity function.

Solving NPE “leakage” Several NPE papers point out that the variational posterior can “leak” mass
outside the prior, i.e. put estimated posterior density in a region with zero prior density. The bijection
from the support of the variational posterior to the prior support solves leakage. It is generally
applicable when such a bijection can be constructed (holds for topologically isomorphic supports).

Going further

• The χ2 divergence, equivalent to the balancing criterion, naturally leads to the following regular-
ization term for K classes classification

χ2(π̃(y) ∥ ϖ̃(y)) =
1

K + 1

K∑
i=0

∫
ϖ̃(y = i |Θ,x)

 K∑
j=0

π̃(Θ,x | y = j)

 dΘ dx− 1

2

.

The effect of this regularizer remains to be studied!

• We extend balancing to algorithms that provide an approximate posterior density however some
methods do not fall into this framework (score-based methods, GANs, ...). Future work could
reformulate our regularizer to apply to these works. It would require defining a purely sample-
based (don’t evaluate the estimated posterior density) version of the balancing criterion.

Take-home messages

• The balancing criterion can be expressed as the χ2 divergence between the marginal classifier
and target marginal distribution over classes. This provides a new perspective on balancing
and serves as a building block for further development.

• The balancing criterion can be extended to algorithms that provide an approximate posterior
density. This broadens the applicability of balancing, enabling more conservative algorithms.

• Empirically, balancing makes posteriors more conservative. Although, it may require a hyper-
parameter search to find the Lagrange multiplier that yields a conservative posterior estimate.


